Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Int Immunol ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38576231

RESUMEN

Autoimmune diseases often arise from conditions where the immune system is compromised. While lymphopenia-induced proliferation (LIP) is crucial for immune system development and maturation, it is also caused by environmental insult, such as infection and becomes a risk factor for autoimmunity in adults. We used Dsg3H1 TCR Transgenic mice, whose T cells are designed to recognize desmogrein-3, a skin antigen, to explore the impact of lymphopenia on post-thymic tolerance. Dsg3H1 mice are known to delete the most highly autoreactive T cells in thymus, and develop only subtle immune-mediated pathology in a steady state. However, we found that a transient lymphopenia by total body irradiation or cyclophosphamide, results in massive dermatitis in Dsg3H1 mice. The symptoms included expansion and development of self-reactive T cells, their differentiation into CD44 high IL-17 producing helper T cells, and severe neutrophilic inflammation. Repopulation of FOXP3+ T regulatory cells after lymphopenia normally occurred, suggesting escape of skin-reactive conventional T cells from control by regulatory T cell. Furthermore, we found that a depletion of the intestinal microbiota by antibiotics prevents the cyclophosphamide induced dermatitis, indicating roles of commensal intestinal microbiota in LIP and Th17 development in vivo. The current data suggested that post thymic tolerance of Dsg3H1 mice is established on a fragile balance in lymphoreplete immune environment and broken by interplay between lymphopenia and intestinal microbiota. The dynamic phenotypes observed in Dsg3H1 mice prompts a reevaluation of opportunistic lymphopenia together with microbiota as pivotal environmental factors, impacting individuals with genetic predispositions of autoimmune diseases.

2.
iScience ; 27(1): 108646, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38226171

RESUMEN

IL-17-producing helper T (Th17) cells are long-lived and serve as central effector cells in chronic autoimmune diseases. The underlying mechanisms of Th17 persistence remain unclear. We demonstrated that abatacept, a CD28 antagonist, effectively prevented the development of skin disease in a Th17-dependent experimental autoimmune dermatitis model. Abatacept selectively inhibited the emergence of IL-7R-negative effector-phenotype T cells while allowing the survival and proliferation of IL-7R+ memory-phenotype cells. The surviving IL-7R+ Th17 cells expressed genes associated with alcohol/aldehyde detoxification and showed potential to transdifferentiate into IL-7R-negative effector cells. Inhibiting aldehyde dehydrogenase reduced IL-7R+ Th17 cells in vivo, independently of CD28, and exhibited additive effects when combined with abatacept. Our findings suggest that CD28 blockade prevents inflammation without eliminating persistent memory cells. These remaining memory cells can be targeted by other drugs, such as aldehyde dehydrogenase inhibitors, to limit their survival, thereby facilitating the treatment of chronic autoimmune diseases.

4.
Cell Rep ; 42(4): 112302, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36989112

RESUMEN

Recent epigenome-wide studies suggest an association between blood DNA methylation and kidney function. However, the pathological importance remains unclear. Here, we show that the homing endonuclease I-PpoI-induced DNA double-strand breaks in kidney glomerular podocytes cause proteinuria, glomerulosclerosis, and tubulointerstitial fibrosis with DNA methylation changes in blood cells as well as in podocytes. Single-cell RNA-sequencing analysis reveals an increase in cytotoxic CD8+ T cells with the activating/costimulatory receptor NKG2D in the kidneys, which exhibit a memory precursor effector cell phenotype, and the CD44high memory CD8+ T cells are also increased in the peripheral circulation. NKG2D blockade attenuates the renal phenotype caused by podocyte DNA damage. Blood methylome shows increased DNA methylation in binding sites for STAT1, a transcription factor contributing to CD8+ T cell homeostasis. Collectively, podocyte DNA damage alters the blood methylome, leading to changes in CD8+ T cells, which contribute to sustained renal injury in chronic kidney disease.


Asunto(s)
Podocitos , Insuficiencia Renal Crónica , Humanos , Podocitos/metabolismo , Metilación de ADN/genética , Linfocitos T CD8-positivos/metabolismo , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Riñón/metabolismo , Proteinuria/genética , Proteinuria/metabolismo , Proteinuria/patología , Insuficiencia Renal Crónica/patología , Daño del ADN , ADN/metabolismo
5.
Int Immunol ; 34(12): 609-619, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-35849090

RESUMEN

Antibodies that block the interaction between PD-1 and PD-1 ligands (anti-PD-1) are in clinical use for the treatment of cancer, yet their efficacy is limited. Pre-approved therapies that enhance the effect of anti-PD-1 in combination are beneficial. Small-molecule inhibitors that attenuate T cell receptor signaling are reported to prevent T cell exhaustion and induce memory T cells with stem cell potential, resulting in a durable effector T cell response in combination with anti-PD-1. In search of such targets, we focused on protein kinase D (PKD), which is suggested to be suppressive in both tumor growth and TCR signaling. We report that CRT0066101, a PKD inhibitor (PKDi), suppressed the growth of mouse tumors at a sub-micromolar concentration in vitro. Despite its inhibitory effects on tumors, a single treatment of tumor-bearing mice with PKDi did not inhibit, but rather accelerated tumor growth, and reversed the therapeutic effect of anti-PD-1. Mice treated with PKDi showed reduced T cell infiltration and defects in the generation of effector T cells, compared to those treated with anti-PD-1, suggesting that PKDi inhibited ongoing antitumor responses. Mechanistically, PKDi inhibited phosphorylation of AKT, a primary checkpoint that is reactivated by anti-PD-1. In conclusion, PKD is fundamentally required for T cell reactivation by anti-PD-1; therefore, inhibition of PKD is not appropriate for combination therapy with anti-PD-1. On the other hand, a single dose of PKDi was shown to strongly suppress experimental autoimmunity in mice, indicating that PKDi could be useful for the treatment of immune-related adverse events that are frequently reported in anti-PD-1 therapy.


Asunto(s)
Neoplasias , Linfocitos T , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/farmacología , Inmunoterapia/métodos , Línea Celular Tumoral , Microambiente Tumoral
6.
J Immunol ; 206(7): 1528-1539, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33619215

RESUMEN

Acquired immune reaction is initiated by dendritic cells (DCs), which present Ags to a few naive Ag-specific T cells. Deregulation of gene expression in DCs may alter the outcome of the immune response toward immunodeficiency and/or autoimmune diseases. Expression of TRIM28, a nuclear protein that mediates gene silencing through heterochromatin, decreased in DCs from old mice, suggesting alteration of gene regulation. Mice specifically lacking TRIM28 in DCs show increased DC population in the spleen and enhanced T cell priming toward inflammatory effector T cells, leading to acceleration and exacerbation in experimental autoimmune encephalomyelitis. TRIM28-deficient DCs were found to ectopically transcribe endogenous retrovirus (ERV) elements. Combined genome-wide analysis revealed a strong colocalization among the decreased repressive histone mark H3K9me3-transcribed ERV elements and the derepressed host genes that were related to inflammation in TRIM28-deficient DCs. This suggests that TRIM28 occupancy of ERV elements critically represses expression of proximal inflammatory genes on the genome. We propose that gene silencing through repressive histone modification by TRIM28 plays a role in maintaining the integrity of precise gene regulation in DCs, which prevents aberrant T cell priming to inflammatory effector T cells.


Asunto(s)
Células Dendríticas/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Retrovirus Endógenos/fisiología , Inflamación/inmunología , Esclerosis Múltiple/inmunología , Linfocitos T/inmunología , Proteína 28 que Contiene Motivos Tripartito/metabolismo , Animales , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Silenciador del Gen , Heterocromatina/metabolismo , Humanos , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína 28 que Contiene Motivos Tripartito/genética
8.
Clin Transl Immunology ; 9(11): e1203, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33163184

RESUMEN

OBJECTIVES: Tocilizumab (TCZ) is a humanised anti-interleukin (IL)-6 receptor (IL-6R) monoclonal antibody that is a promising agent to treat various autoimmune diseases. However, the mechanism of TCZ efficacy is unclear. This study aims to elucidate the relationship between Tregs and IL-6R blockade in autoimmunity-mediated renal disease based on a TCZ-treated cohort of patients with anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) and in an experimental model of crescentic glomerulonephritis (cGN). METHODS: We examined multiple serum levels of cytokines and chemokines and peripheral blood mononuclear cells in patients with AAV who received TCZ monotherapy and achieved drug-free remission. Moreover, we investigated the mechanistic role of IL-6R blockade in accelerated cGN model to analyse the local sites of inflammation. RESULTS: Serum chemokines CCL22 and CCL17, in addition to the CCR4+Foxp3+ Treg population, increased in patients who demonstrated drug-free remission after the cessation of TCZ. In the cGN model, IL-6R blockade ameliorated the disease, elevated CCL22/17 in CD206+CD11b+CD11c+ kidney M2-like type macrophages, and increased the migration of Tregs into the kidney and regional lymph nodes. The local administration of CCL22 in the kidney facilitated Treg accumulation and reduced glomerular crescent formation. CONCLUSIONS: This study revealed a new mechanism whereby effector Tregs migrate into the inflammatory kidney via the CCL22/17-CCR4 axis that is facilitated by M2-like type macrophages that are induced by IL-6R blockade.

9.
Cancer Res ; 80(3): 471-483, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31767627

RESUMEN

Recent studies have shown that stem cell memory T (TSCM) cell-like properties are important for successful adoptive immunotherapy by the chimeric antigen receptor-engineered-T (CAR-T) cells. We previously reported that both human and murine-activated T cells are converted into stem cell memory-like T (iTSCM) cells by coculture with stromal OP9 cells expressing the NOTCH ligand. However, the mechanism of NOTCH-mediated iTSCM reprogramming remains to be elucidated. Here, we report that the NOTCH/OP9 system efficiently converted conventional human CAR-T cells into TSCM-like CAR-T, "CAR-iTSCM" cells, and that mitochondrial metabolic reprogramming played a key role in this conversion. NOTCH signaling promoted mitochondrial biogenesis and fatty acid synthesis during iTSCM formation, which are essential for the properties of iTSCM cells. Forkhead box M1 (FOXM1) was identified as a downstream target of NOTCH, which was responsible for these metabolic changes and the subsequent iTSCM differentiation. Like NOTCH-induced CAR-iTSCM cells, FOXM1-induced CAR-iTSCM cells possessed superior antitumor potential compared with conventional CAR-T cells. We propose that NOTCH- or FOXM1-driven CAR-iTSCM formation is an effective strategy for improving cancer immunotherapy. SIGNIFICANCE: Manipulation of signaling and metabolic pathways important for directing production of stem cell memory-like T cells may enable development of improved CAR-T cells.


Asunto(s)
Proteína Forkhead Box M1/metabolismo , Memoria Inmunológica/inmunología , Leucemia/inmunología , Biogénesis de Organelos , Receptores Quiméricos de Antígenos/inmunología , Receptores Notch/metabolismo , Linfocitos T/inmunología , Animales , Diferenciación Celular , Técnicas de Cocultivo , Humanos , Inmunoterapia Adoptiva , Leucemia/metabolismo , Leucemia/patología , Activación de Linfocitos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Transducción de Señal , Células Madre/inmunología , Células del Estroma/inmunología , Células del Estroma/metabolismo , Células del Estroma/patología
10.
Methods Mol Biol ; 2048: 41-51, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31396927

RESUMEN

Adoptive T cell therapy is an attractive strategy in tumor immunotherapy. The transfer of in vitro expanded tumor-associated antigen (TAA)-specific T cells from patients may effectively destroy the original tumor cells. One of the limitations is a rapid acquisition of tolerant (anergy, deletion, dysfunctional, and/or exhausted) phenotypes. We and others found that stem cell memory T (TSCM) cells are strongly resistant to tolerance, showing strong expansion and persistence in vivo and providing long-lasting antitumor effects. We previously established that phenotypically TSCM cells (iTSCM) can be induced using a simple coculture of activated T cells with OP9 stroma cells expressing a Notch ligand. Here, we describe a defined protocol for generating human iTSCM cells, including reagents, culture setting, and procedure.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Separación Celular/métodos , Citometría de Flujo/métodos , Cultivo Primario de Células/métodos , Animales , Antígenos de Neoplasias/inmunología , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Línea Celular Tumoral , Clonación Molecular/métodos , Técnicas de Cocultivo/instrumentación , Técnicas de Cocultivo/métodos , Citometría de Flujo/instrumentación , Técnica del Anticuerpo Fluorescente Directa , Voluntarios Sanos , Humanos , Memoria Inmunológica , Inmunoterapia Adoptiva/métodos , Activación de Linfocitos , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Células Madre Mesenquimatosas , Ratones , Neoplasias/inmunología , Neoplasias/terapia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción Genética/métodos
11.
Sci Rep ; 9(1): 10144, 2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-31300681

RESUMEN

Current clinically approved biomarkers for the PD-1 blockade cancer immunotherapy are based entirely on the properties of tumour cells. With increasing awareness of clinical responses, more precise biomarkers for the efficacy are required based on immune properties. In particular, expression levels of immune checkpoint-associated molecules such as PD-1, PD-L1, and CTLA-4 would be critical to evaluate the immune state of individuals. Although quantification of their soluble form leased from the membrane will provide quick evaluation of patients' immune status, available methods such as enzyme-linked immunosorbent assays to measure these soluble factors have limitations in sensitivity and reproducibility for clinical use. To overcome these problems, we developed a rapid and sensitive immunoassay system based on chemiluminescent magnetic technology. The system is fully automated, providing high reproducibility. Application of this system to plasma of patients with several types of tumours demonstrated that soluble PD-1, PD-L1, and CTLA-4 levels were increased compared to those of healthy controls and varied among tumour types. The sensitivity and detection range were sufficient for evaluating plasma concentrations before and after the surgical ablation of cancers. Therefore, our newly developed system shows potential for accurate detection of soluble PD-1, PD-L1, and CTLA-4 levels in the clinical practice.


Asunto(s)
Antígeno B7-H1/sangre , Biomarcadores de Tumor/sangre , Antígeno CTLA-4/sangre , Inmunoensayo/métodos , Receptor de Muerte Celular Programada 1/sangre , Automatización de Laboratorios , Carcinoma de Pulmón de Células no Pequeñas/sangre , Carcinoma de Células Renales/sangre , Estudios de Casos y Controles , Femenino , Humanos , Neoplasias Renales/sangre , Luminiscencia , Neoplasias Pulmonares/sangre , Mieloma Múltiple/sangre , Neoplasias Ováricas/sangre , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
12.
PLoS One ; 14(3): e0213383, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30840704

RESUMEN

Replicative DNA polymerases are frequently stalled at damaged template strands. Stalled replication forks are restored by the DNA damage tolerance (DDT) pathways, error-prone translesion DNA synthesis (TLS) to cope with excessive DNA damage, and error-free template switching (TS) by homologous DNA recombination. PDIP38 (Pol-delta interacting protein of 38 kDa), also called Pol δ-interacting protein 2 (PolDIP2), physically associates with TLS DNA polymerases, polymerase η (Polη), Polλ, and PrimPol, and activates them in vitro. It remains unclear whether PDIP38 promotes TLS in vivo, since no method allows for measuring individual TLS events in mammalian cells. We disrupted the PDIP38 gene, generating PDIP38-/- cells from the chicken DT40 and human TK6 B cell lines. These PDIP38-/- cells did not show a significant sensitivity to either UV or H2O2, a phenotype not seen in any TLS-polymerase-deficient DT40 or TK6 mutants. DT40 provides a unique opportunity of examining individual TLS and TS events by the nucleotide sequence analysis of the immunoglobulin variable (Ig V) gene as the cells continuously diversify Ig V by TLS (non-templated Ig V hypermutation) and TS (Ig gene conversion) during in vitro culture. PDIP38-/- cells showed a shift in Ig V diversification from TLS to TS. We measured the relative usage of TLS and TS in TK6 cells at a chemically synthesized UV damage (CPD) integrated into genomic DNA. The loss of PDIP38 also caused an increase in the relative usage of TS. The number of UV-induced sister chromatid exchanges, TS events associated with crossover, was increased a few times in PDIP38-/- human and chicken cells. Collectively, the loss of PDIP38 consistently causes a shift in DDT from TLS to TS without enhancing cellular sensitivity to DNA damage. We propose that PDIP38 controls the relative usage of TLS and TS increasing usage of TLS without changing the overall capability of DDT.


Asunto(s)
Daño del ADN , Proteínas Nucleares/metabolismo , Animales , Proteínas Aviares/deficiencia , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Línea Celular , Pollos , ADN/biosíntesis , ADN/genética , ADN Polimerasa beta/deficiencia , ADN Polimerasa beta/genética , ADN Polimerasa beta/metabolismo , ADN Primasa/deficiencia , ADN Primasa/genética , ADN Primasa/metabolismo , Reparación del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/deficiencia , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Técnicas de Inactivación de Genes , Genes de Inmunoglobulinas , Humanos , Enzimas Multifuncionales/deficiencia , Enzimas Multifuncionales/genética , Enzimas Multifuncionales/metabolismo , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Moldes Genéticos
13.
Int Immunol ; 31(5): 335-347, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30726915

RESUMEN

Ten-eleven translocation (TET) proteins regulate DNA methylation and gene expression by converting 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Although Tet2/Tet3 deficiency has been reported to lead to myeloid cell, B-cell and invariant natural killer T (iNKT) cell malignancy, the effect of TET on regulatory T cells (Tregs) has not been elucidated. We found that Tet2/Tet3 deficiency in Tregs led to lethal hyperproliferation of CD4+Foxp3+ T cells in the spleen and mesenteric lymph nodes after 5 months of age. Additionally, in aged Treg-specific Tet2/Tet3-deficient mice, serum IgG1, IgG3, IgM and IgE levels were markedly elevated. High IL-17 expression was observed in both Foxp3+ and Fopx3- CD4+ T cells, and adoptive transfer of Tet2/Tet3-deficient Tregs into lymphopenic mice inhibited Foxp3 expression and caused conversion into IL-17-producing cells. However, the conserved non-coding DNA sequence-2 (CNS2) region of the Foxp3 gene locus, which has been shown to be particularly important for stable Foxp3 expression, was only partly methylated. We identified novel TET-dependent demethylation sites in the Foxp3 upstream enhancer, which may contribute to stable Foxp3 expression. Together, these data indicate that Tet2 and Tet3 are involved in Treg stability and immune homeostasis in mice.


Asunto(s)
Proteínas de Unión al ADN/inmunología , Dioxigenasas/inmunología , Factores de Transcripción Forkhead/metabolismo , Interleucina-17/biosíntesis , Proteínas Proto-Oncogénicas/inmunología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/patología , Animales , Proliferación Celular , Interleucina-17/inmunología , Ratones , Ratones Endogámicos C57BL
14.
Nature ; 565(7738): 246-250, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30602786

RESUMEN

In addition to maintaining immune tolerance, FOXP3+ regulatory T (Treg) cells perform specialized functions in tissue homeostasis and remodelling1,2. However, the characteristics and functions of brain Treg cells are not well understood because there is a low number of Treg cells in the brain under normal conditions. Here we show that there is massive accumulation of Treg cells in the mouse brain after ischaemic stroke, and this potentiates neurological recovery during the chronic phase of ischaemic brain injury. Although brain Treg cells are similar to Treg cells in other tissues such as visceral adipose tissue and muscle3-5, they are apparently distinct and express unique genes related to the nervous system including Htr7, which encodes the serotonin receptor 5-HT7. The amplification of brain Treg cells is dependent on interleukin (IL)-2, IL-33, serotonin and T cell receptor recognition, and infiltration into the brain is driven by the chemokines CCL1 and CCL20. Brain Treg cells suppress neurotoxic astrogliosis by producing amphiregulin, a low-affinity epidermal growth factor receptor (EGFR) ligand. Stroke is a leading cause of neurological disability, and there are currently few effective recovery methods other than rehabilitation during the chronic phase. Our findings suggest that Treg cells and their products may provide therapeutic opportunities for neuronal protection against stroke and neuroinflammatory diseases.


Asunto(s)
Astrocitos/patología , Isquemia Encefálica/inmunología , Isquemia Encefálica/patología , Gliosis/patología , Neuroprotección/inmunología , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/inmunología , Animales , Encéfalo/citología , Encéfalo/inmunología , Movimiento Celular , Proliferación Celular , Quimiocina CCL1/inmunología , Quimiocina CCL20/inmunología , Interleucina-2/inmunología , Interleucina-33/inmunología , Interleucina-6/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Antígenos de Linfocitos T/inmunología , Receptores CCR/metabolismo , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo , Factor de Transcripción STAT3/metabolismo , Serotonina/metabolismo , Transducción de Señal , Linfocitos T Reguladores/metabolismo
15.
Int Immunol ; 30(8): 357-373, 2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-29982622

RESUMEN

T helper type 1 (Th1) cells form one of the most stable CD4 T-cell subsets, and direct conversion of fully differentiated Th1 to regulatory T (Treg) cells has been poorly investigated. Here, we established a culture method for inducing Foxp3 from Th1 cells of mice and humans. This is achieved simply by resting Th1 cells without T-cell receptor ligation before stimulation in the presence of transforming growth factor-beta (TGF-ß). We named the resulting Th1-derived Foxp3+ cells Th1reg cells. Mouse Th1reg cells showed an inducible Treg-like phenotype and suppressive ability both in vitro and in vivo. Th1reg cells could also be induced from in vivo-developed mouse Th1 cells. Unexpectedly, the resting process enabled Foxp3 expression not through epigenetic changes at the locus, but through metabolic change resulting from reduced mammalian target of rapamycin complex 1 (mTORC1) activity. mTORC1 suppressed TGF-ß-induced phosphorylation of Smad2/3 in Th1 cells, which was restored in rested cells. Our study warrants future research aiming at development of immunotherapy with Th1reg cells.


Asunto(s)
Reprogramación Celular , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/metabolismo , Células TH1/citología , Células TH1/metabolismo , Adulto , Animales , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Linfocitos T Reguladores/inmunología , Células TH1/inmunología
16.
Cancer Sci ; 109(7): 2130-2140, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29790621

RESUMEN

Adoptive T-cell therapy is an effective strategy for cancer immunotherapy. However, infused T cells frequently become functionally exhausted, and consequently offer a poor prognosis after transplantation into patients. Adoptive transfer of tumor antigen-specific stem cell memory T (TSCM ) cells is expected to overcome this shortcoming as TSCM cells are close to naïve T cells, but are also highly proliferative, long-lived, and produce a large number of effector T cells in response to antigen stimulation. We previously reported that activated effector T cells can be converted into TSCM -like cells (iTSCM ) by coculturing with OP9 cells expressing Notch ligand, Delta-like 1 (OP9-hDLL1). Here we show the methodological parameters of human CD8+ iTSCM cell generation and their application to adoptive cancer immunotherapy. Regardless of the stimulation by anti-CD3/CD28 antibodies or by antigen-presenting cells, human iTSCM cells were more efficiently induced from central memory type T cells than from effector memory T cells. During the induction phase by coculture with OP9-hDLL1 cells, interleukin (IL)-7 and IL-15 (but not IL-2 or IL-21) could efficiently generate iTSCM cells. Epstein-Barr virus-specific iTSCM cells showed much stronger antitumor potentials than conventionally activated T cells in humanized Epstein-Barr virus transformed-tumor model mice. Thus, adoptive T-cell therapy with iTSCM offers a promising therapeutic strategy for cancer immunotherapy.


Asunto(s)
Inmunoterapia Adoptiva/métodos , Neoplasias , Células Madre/inmunología , Subgrupos de Linfocitos T/inmunología , Linfocitos T/inmunología , Animales , Línea Celular , Humanos , Memoria Inmunológica , Activación de Linfocitos/inmunología , Ratones , Neoplasias/inmunología
17.
Cancer Res ; 78(11): 3027-3040, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29559474

RESUMEN

Enhanced infiltration of regulatory T cells (Treg) into tumor tissue is detrimental to patients with cancer and is closely associated with poor prognosis as they create an immunosuppressive state that suppresses antitumor immune responses. Therefore, breaking Treg-mediated immune tolerance is important when considering cancer immunotherapy. Here, we show that the Nr4a nuclear receptors, key transcription factors maintaining Treg genetic programs, contribute to Treg-mediated suppression of antitumor immunity in the tumor microenvironment. Mice lacking Nr4a1 and Nr4a2 genes specifically in Tregs showed resistance to tumor growth in transplantation models without exhibiting any severe systemic autoimmunity. The chemotherapeutic agent camptothecin and a common cyclooxygenase-2 inhibitor were found to inhibit transcriptional activity and induction of Nr4a factors, and they synergistically exerted antitumor effects. Genetic inactivation or pharmacologic inhibition of Nr4a factors unleashed effector activities of CD8+ cytotoxic T cells and evoked potent antitumor immune responses. These findings demonstrate that inactivation of Nr4a in Tregs breaks immune tolerance toward cancer, and pharmacologic modulation of Nr4a activity may be a novel cancer treatment strategy targeting the immunosuppressive tumor microenvironment.Significance: This study reveals the role of Nr4a transcription factors in Treg-mediated tolerance to antitumor immunity, with possible therapeutic implications for developing effective anticancer therapies. Cancer Res; 78(11); 3027-40. ©2018 AACR.


Asunto(s)
Autoinmunidad/inmunología , Tolerancia Inmunológica/inmunología , Receptores Citoplasmáticos y Nucleares/inmunología , Linfocitos T Reguladores/inmunología , Animales , Autoinmunidad/efectos de los fármacos , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/farmacología , Células HEK293 , Humanos , Tolerancia Inmunológica/efectos de los fármacos , Inmunoterapia/métodos , Ratones , Ratones Endogámicos C57BL , Linfocitos T Citotóxicos/efectos de los fármacos , Linfocitos T Citotóxicos/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Transcripción Genética/inmunología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
18.
Artículo en Inglés | MEDLINE | ID: mdl-28716890

RESUMEN

Cytokines are key modulators of immunity. Most cytokines use the Janus kinase and signal transducers and activators of transcription (JAK-STAT) pathway to promote gene transcriptional regulation, but their signals must be attenuated by multiple mechanisms. These include the suppressors of cytokine signaling (SOCS) family of proteins, which represent a main negative regulation mechanism for the JAK-STAT pathway. Cytokine-inducible Src homology 2 (SH2)-containing protein (CIS), SOCS1, and SOCS3 proteins regulate cytokine signals that control the polarization of CD4+ T cells and the maturation of CD8+ T cells. SOCS proteins also regulate innate immune cells and are involved in tumorigenesis. This review summarizes recent progress on CIS, SOCS1, and SOCS3 in T cells and tumor immunity.


Asunto(s)
Citocinas/metabolismo , Regulación de la Expresión Génica/inmunología , Transducción de Señal/inmunología , Animales , Citocinas/genética , Humanos
19.
Int Immunol ; 29(10): 457-469, 2017 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-29126272

RESUMEN

Antigen-specific regulatory T cells (Tregs) possess the potential to reduce excess immune responses in autoimmune diseases, allergy, rejection after organ transplantation and graft-versus-host disease (GVHD) following hematopoietic stem cell transplantation. Although in vitro-expanded antigen-specific induced Tregs (iTregs) have been considered to be a promising therapeutic agent against such excessive immune reactions, the instability of iTregs after transfer is a fundamental problem in their clinical application. In this study, we searched for the optimal way to generate stable iTregs for the prevention of the murine GVHD model, in which conventional iTregs are reported to be inefficient. Allo-antigen-specific iTregs were generated by co-culturing naive T cells with allogenic dendritic cells in the presence of TGF-ß and retinoic acid. By examining various agents and genes, we found that vitamin C stabilized Foxp3 expression most effectively in adoptively transferred iTregs under a GVHD environment. Vitamin C treatment caused active DNA demethylation specifically on the conserved non-coding sequence 2 (CNS2) enhancer of the Foxp3 gene locus in allo-antigen-specific iTregs and reduced iTreg conversion into pathogenic exFoxp3 cells. Vitamin C-treated iTregs suppressed GVHD symptoms more efficiently than untreated iTregs. Vitamin C also facilitated induction of a FOXP3high iTreg population from human naive T cells, which was very stable even in the presence of IL-6 in vitro. The treatment of vitamin C for iTreg promises innovative clinical application for adoptive Treg immunotherapy.


Asunto(s)
Ácido Ascórbico/farmacología , Modelos Animales de Enfermedad , Enfermedad Injerto contra Huésped/prevención & control , Isoantígenos/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Animales , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/terapia , Humanos , Inmunoterapia Adoptiva , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Linfocitos T Reguladores/inmunología , Tretinoina/farmacología
20.
Curr Top Microbiol Immunol ; 410: 99-126, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28900679

RESUMEN

The response of peripheral T lymphocytes (T cell) is controlled by multiple checkpoints to avoid unwanted activation against self-tissues. Two opposing costimulatory receptors, CD28 and CTLA-4, on T cells bind to the same ligands (CD80 and CD86) on antigen-presenting cells (APCs), and provide positive and negative feedback for T-cell activation, respectively. Early studies suggested that CTLA-4 is induced on activated T cells and binds to CD80/CD86 with much stronger affinity than CD28, providing a competitive inhibition. Subsequent studies by many researchers revealed the more complex mode of T-cell inhibition by CTLA-4. After T-cell activation, CTLA-4 is stored in the intracellular vesicles, and recruited to the immunological synapse formed between T cells and APCs, and inhibits further activation of T cells by blocking signals initiated by T-cell receptors and CD28. CTLA-4-positive cells can also provide cell-extrinsic regulation on other autoreactive T cells, and are considered to provide an essential regulatory mechanism for FoxP3+ regulatory T cells. Genetic deficiency of CTLA-4 leads to CD28-mediated severe autoimmunity in mice and humans, suggesting its function as a fundamental brake that restrains the expansion and activation of self-reactive T cells. In cancer, therapeutic approaches targeting CTLA-4 by humanized blocking antibodies has been demonstrated to be an effective immunotherapy by reversing T-cell tolerance against tumors. This chapter introduces CTLA-4 biology, including its discovery and mechanism of action, and discusses questions related to CTLA-4.


Asunto(s)
Antígenos CD , Antígeno CTLA-4 , Inmunoconjugados , Activación de Linfocitos , Abatacept , Animales , Antígenos CD28 , Antígeno CTLA-4/inmunología , Humanos , Ratones , Linfocitos T
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...